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PREFACE

The work described in this report was performed by the John A. Volpe Nationa Transportation
Systems Center (Volpe Center) as part of aresearch program to develop technical information
and criteriafor evaluating the structural integrity of railroad tank cars. Thisresearch isbeing
conducted in support of the Equipment and Operating Practices Research Division of the Office
of Research and Development of the Federal Railroad Administration (FRA). The FRA program
manager for tank car safety research is Mr. Jose Pefia.

Thisreport isthefirst of two in a series focusing on the puncture resistance of tank car shells
from impacts of couplers from other rail cars, broken rails, and other objects. Specifically, meth-
odologies to predict the puncture velocity of a given tank car design are evaluated. Here, the term
“puncture velocity” refers to the impact velocity that will cause full penetration of the impacting
object into the tank.

In this report, a methodology is described that is based on a set of semi-empirical equations that
were originally devel oped by the Railway Progress Institute - Association of American Railroads
Tank Car Safety Research and Test Project, and later modified by the industry to account for
head shield protection and jacket insulation in inter-modal tanks. The modified semi-empirical
eguations are eval uated through comparisons with available experimental data on full-scale and
actual tank cars.

The semi-empirical equations generally appear to produce reasonable and conservative estimates
of puncture velocity when compared with experimental data. However, differences between the
calculated and observed results become more widespread when the tank car is pressurized or
when the head shield protection is present. These differences may be attributed to the simplify-
ing assumptions that were applied during the devel opment of the equations. Alternative method-
ologies to determine the puncture velocity in tank cars will be explored and discussed in the sec-
ond report in this series.
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EXECUTIVE SUMMARY

While current regulations for tank cars require head protection on most pressure cars carrying
flammable gases and certain other hazardous materials, they do not prescribe how this head pro-
tection performance standard must be met. One option permitted by the current regulationsin
thisregard is the use of a steel plate mounted in front of the tank head to act asashield. The
purpose of head protection is to increase the resistance of the tank-head to puncture from the
couplers of other cars, broken rails, and other objects. The industry has now requested a perform-
ance standard for head protection based on the ability to predict puncture velocity in lieu of ac-
tual testing.

Research is being conducted by the Vol pe Center in support of the Federal Railroad Administra-

tion (FRA) to examine the structural integrity of tank cars, including methodol ogies to determine
the puncture velocity of agiven tank car design. A two-part series of reports have been prepared
to describe and eval uate such methodol ogies.

This report describes a methodology to determine the puncture velocity of tank cars based on a
set of semi-empirical equations which were originally developed by the Railway Progress Insti-
tute - Association of American Railroads Tank Car Safety Research and Test Project and later
modified by the industry to account for head shield protection and jacket insulation in inter-
modal tanks. Additionally, these semi-empirical equations are evaluated by comparing cal cu-
lated puncture velocities with results from tank car impact tests. The semi-empirical equations
generaly appear to produce reasonable and conservative estimates of puncture velocity when
compared with experimental data. However, differences between the calculated and observed
results become more widespread when the tank is pressurized or when head shield protection is
present. These differences may be attributed to the ssimplifying assumptions that were applied
during the development of the equations. For example, Hertz contact is assumed in the formula-
tion to relate maximum impact force and impact velocity, which is an assumption usually associ-
ated with problems involving elastic impacts. Alternative methodologies to determine the punc-
ture velocity in tank cars will be explored and discussed in the second report in this series.

Sixty-five test cases involving full-scale and actual tank cars were considered in thisreport. The
outcome predicted by the semi-empirical equations (i.e., puncture or no puncture) agreed with the
experimental resultsin 48 out of these 65 cases. Of the 17 cases where the predicted and actual
outcomes disagreed, the semi-empirical equations underestimated the puncture velocity in 15
cases, indicating conservatism when applying the semi-empirical approach. Underestimates may
be considered to be on the safe side and of no concern in terms of puncture velocity.

The semi-empirical equations overestimated the actual puncture velocity in two test cases con-
sidered in thisreport. In thefirst case (Impact number 6 in Table 2 on page 12), the tank was
completely filled with liquid (i.e., 0% outage) which represented an anomal ous test condition
since all other testsin this particular seriesinvolving pressurized tanks had an outage of 2%. In
the second case where the semi-empirical equations overestimated the actual puncture velocity
(Test FS-23 in Table 7 on page 18), the shell thickness was 0.875 inch which represented the
largest shell thickness considered in the 65 test cases involving full-scale and actua tank cars.

Xi



This test case aso involved internal pressurization at 100 psi and thermal insulation with a
0.125-inch steel jacket.
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1. INTRODUCTION

Each year, the nation’ s railroad tank cars make about 1 million shipments with hazardous mate-
rids. These materias can be poisonous, corrosve, flammable or pose other hedlth or safety
hazards. Approximately 1,000 accidental releases of hazardous materials from tank cars are
reported annualy to the U.S. Department of Transportation (DOT), Research and Specia Pro-
grams Adminigration (RSPA), Office of Hazardous Materids Safety. Most are small spillsand
leaks but some lead to injuries, property damage, environmenta contamination and other con
sequences of concern.

Two DOT agencies - the Federd Railroad Adminigtration (FRA) and the Research and Specid
Programs Adminidration (RSPA) - share responghility for tank-car safety in the United States.
Moreover, these agencies determine which materias must be shipped in tank cars best designed
to withstand train crashes and to prevent accidentd spills of hazardous materias. In recent
years, both the FRA and the railroad industry, through the Railway Progress Indtitute - Associa-
tion of American Railroads (RPI-AAR) Tank Car Safety Research and Test Project, have
worked cooperatively to develop stlandards for shipment of hazardous materidsin tank cars.
These efforts have improved the safety of tank-car operations.

From 1978 to 1984, regulations were changed to require tank car head protection on most
pressure cars carrying flammable gases and certain other hazardous materids. The purpose of
tank car head protection isto increase the resistance of the tank head to puncture from the cou
plers of other cars, broken rails, and other objects. Current regulations, however, do not
prescribe how thistank car head protection performance standard must be met but do permit,
as an option, the use of stedl plates mounted in front of the tank heads which act as head shidd
protection. The industry has now requested a performance standard for tank car head protec-
tion based on the ability to predict puncture velodity in lieu of actua testing.

Studies on tank car puncture were conducted by the RPI-AAR Tank Car Safety Research and
Test Project in the 1970s. These studies were funded partidly by the FRA. Data were col-
lected during impact tests on tank-like structures of varying scales. As part of that study, semi-
empirica equations were developed to caculate the velocity a which the tank car shell would
puncture (referred to as the puncture velocity). More recently, the DuPont Company modified
these semi-empirica equations to include the effect of head protection and therma insulation for
intermodal tanks (Belport, 1993). Subsequently, the FRA requested technical support from the
Volpe Nationd Transportation Systems Center (V ol pe Center) to evauate the applicability of
the semi-empirica equations to actud tank cars.

Thisreport isthe firgt in atwo- part series on the evaluaion of semi-empirica equationsto
calculate the puncture velocity of tank car shells. In this report, results from the semi-empirica
equations are correlated with data obtained from tank car impact tests. The sources of these
experimenta data include:



RPI-AAR tank-car study report (Phillips and Olsen, 1972)
Chlorine tank car report (Coltman and Hazel, 1992)
Aluminum tank car report (Larson, 1992)

A second report in this series will describe comparisons between the semi-empirica equetions
and engineering analyses which was conducted to provide atheoretica basisfor caculating the
puncture velocity of tank car shells.

The semi-empirica equations to calculate puncture velocity are described in Section 2.
Correlations between the calculated puncture velocity from these equations and actud test data
are presented in Section 3.



2. SEMI-EMPIRICAL EQUATIONS TO CALCULATE PUNCTURE VELOCITY

The semi-empiricd equations to caculate puncture velocity are discussed in this section. These
equations were originaly developed by the RPI-AAR Tank Car Safety Project for bare tank
heads (Shang and Everett, 1972), and later modified by the DuPont Company to account for
shidd protection and thermd insulation.

In deriving the equations to predict puncture velocity, the energy transmitted by wave propaga-
tion is consdered smal compared to the initial kinetic energy and the energy disspated during
deformation, and is therefore neglected. 1n such cases, loca indentations or penetrations are
strongly coupled to the overdl deformation of the structure. More-over, the process is consid-
ered as isothermal so that temperature and other thermodynamic effects are so neglected.

The derivation of equations to predict puncture velocity consists of three parts: (1) maximum
impact force as afunction of indentation, (2) indentation as a function of impact velocity, and (3)
afalure criterion.

(1) Maximum impact force as a function of indentation.
The maximum force due to a coupler impacting the head of atank isrelaed to the indentation or
dent sze by the following equation:

F(d) =35 10%4%[ - (p+15)" L)
2 )| 15

where F' is the maximum impact force (in units of kips), d isthe indentation (in inches), 4 isthe
shdll thickness (ininch), a isthe radius of the tank head (in inches), and p isthe interna pressure
(inpg). The exponent of 3/2 for 4 indicates that a Hertzian relationship between the contact
force and the indentation was assumed in the formulation. The Hertz contact assumption implies
that the problems of eastic contact and elastic impact are trested identicaly in this formulation.
The assumption of Hertz contact may be valid for low-velocity impacts, but may be question-
able for impacts involving large plastic deformations or those resulting in puncture or other types
of falure.

(2) Indentation as a function of impact velocity.
The semi-empirical eguation for indentation or dent Szeisalinear function of impact velocity:

—QQ’ 105 2_a i V16 @ _ ya °
d(v)=88" 10 (h) a ( . j|:1 0.23(40) :| 2

where d isthe indentation relative to its undeformed condition (in inches), v isthe impact veloc-
ity (in miles per hour), 17; isthe weight of the impacting car (in kips), and g isthe acceleration



due to gravity (386 in/s’). Also, a istheratio between the weights of the tank car and the ram
car or W,HlWw;.

(3) Failure criterion.

Failure is assumed to occur when the maximum stress exceeds or is equd to the ultimate shear
strength. For this purpose, the transverse shear component of stressis calculated for aflat cir-
cular plate subjected to a concentrated |oad offset from the center to represent a“knuckle”’
impact. Aninfinite series solution for this configuration is available in the open literature (for ex-
ample, refer to page 290 of Timoshenko and Woinowsky-Krieger, 1959). The RPI-AAR
formulation is based upon the firg five terms of the infinite series solution which is

t =185 3)
ah

where F' isthe coupler force and a isthe radius of the circular plate. Matheméticdly, the faillure
criterion can be expressed as:

181% st @)

wheret , isthe ultimate shear strength of the head materid. In generd, mechanica properties
for agiven materid are reported in terms of yield strength, ultimate tensile strength, and percent

elongation. Assuming that triaxid stresses are related to uniaxia test deta by the von Mises
equivaent gress, the ultimate shear strength is equal to 57.7% of the ultimate tendle strength.

2.1 Puncture Velocity for a Bare Head

An equation to caculate the maximum coupler force as afunction of impact velocity can be de-
rived by combining equations (1) and (2):

F(v) = 0003832 ¥* (W,v)*2| (p) (5)

wherel (p) isadimensonless function of internal pressure defined as

p +15 0.6
(—15 j ©)

o= of 2]

The numericd vaueof | isaways greater than or equal to 1. For example, avaue of 1.0 cor-
responds to the case of no internal pressure; avalue of 1.72 to a pressure of 100 ps.



An expression to caculate the puncture velocity (i.e., the velocity a which puncture of the tank
may be expected) can be derived by subgtituting the equation for maximum coupler force into
the falure criterion. In other words, combining equations (4) and (5), and then solving for the
velodity gives

Vv =

276 [t an ™
P VVlajjls

1(p)

In this equetion, v, is the puncture velocity in miles per hour (mph).

2.2 Puncture Velocity for a Tank Car Head with Head Shield and/or Jacket

Test resultsindicate that there is a smdl reduction in impact velocity between head shield and
tank car head impacts, suggesting that the head shield has a negligible energy absorption
capability. Apparently the primary benefit of ahead shid isto increase the overdl materia
thickness. In calculating the puncture velocity, the apparent increase in materid thicknessisrep-
resented by an effective thickness parameter defined as

/133
—_ 133 133 133
hy = [hh thT R ]

(8)

where /1, isthe tank car head thickness, 7, is the head shield thickness, and #; is the jacket
thickness. The exponent of 1.33 isan empirica congant.

A small but measurable reduction in impact velocity has been observed when a coupler hitsa
head shied and then when it hits the tank car head because, in generd, the head shield is placed
with a gap distance between it and the tank head. This reduction in impact velocity can be esti-
mated by applying the principle of energy conservation which is sated mathematicaly as:

e, +—mv12 =e, +EmV22 ©)

2

where e; and e, areinitid and fina energy Sates, m isthe mass of the ram car, v, isthe ram-car
velocity before shidd impact, and v, is the ram-car velocity after shied impact but before head
impact. In equation (9), e, isassumed to be zero and e, = F; xD Where Fis is the coupler force
acting on the shidd and D is the gap distance between the shield and the tank head.! The
maximum coupler force acting on the head shield can be caculated using equation (5). Substi-
tuting these values into equation (9) and solving for v, the ram-car veocity (in miles per hour)
after head shield impact but before tank car head impact is:

! Thisformulation assumesthat the shield has small energy absorption capability.



2D
v, =v, [1- ——= (10)
(17.6v,)2W,

where g isthe acceleration due to gravity (386 in/s?). The conversion factor of 17.6in/s= 1
mph has aso been included in equation (10). A so-caled gap factor can be defined as:

1
1- 2FDg
(176v,,)*W,

where v, is the puncture velocity for abare tank car head (in mph) with effective thickness as
defined in equation (8), or

K, =

(11)

276 [t.ahyy |
Vﬁb = .1/16 a4 (12)
Wa I (p)

Then, the puncture velocity for atank car head with head shield protection and/or jacket insula-
tion can be calculated from:

v, =K;%,, (13)
where K ; is the gap factor defined by equation (11) and v, is defined by equation (12).
A secondary benefit of the head shield is that it prevents puncture by blunting the corner edges

of the coupler making puncture less likely. This effect has not been taken into account explicitly
in these equations.



3. CORRELATION OF RESULTS FROM SEMI-EMPIRICAL
EQUATIONS WITH TEST DATA

The sami-empirica equations were evauated by comparing results from these equations with
test data from various sources. The first source of dataisthe RPI-AAR Tank Car Head Study
(Phillips and Olsen, 1972) which included 42 full-scale tests on riveted head tank cars (34 on
bare head tank cars, 6 with head shield protection, and 2 with an insulating jacket), 33 one-fifth
scale tests (29 on bare head tank cars and 4 with head shield protection), and 3 tests on
DOT112A340W tank cars (2 on bare heads and 1 with head shield protection). Measure-
ments on the maximum impact force and indentation size for varying impact velocities were
recorded during some of these tests.

Figure 1 comparesimpact forces measured in the first phase of the RPI-AAR tank car head
study on riveted tank cars (Phillips and Olsen, 1972) with those calculated from equation (1).
Two sets of data are plotted in the figure: data for nonpressurized tank cars and data for pres-
aurized tank cars. The straight line shown on the plot represents perfect correlation. Data
points falling below the straight line represent cases where the caculated impact forces overes-
timated the actua test results. Conversely, points above the line represent cases where the
caculated impact forces underestimated those from the actua test. The figure indicates that
agreement between the calculated and measured impact forces is better at relatively low force
levels (Iess than 200 kips) than at higher force levels. In other words, equation (1) is more ac-
curate at predicting impact forces at relatively low impact velocities than at higher velocities. A
quantitative measure of the overall scatter observed in the plot can be estimated by cdculating a
gatistic known as the correlaion coefficient. When dl the data points plotted in Figure 1 are
included in this caculation, the corrdation coefficient is 0.858. For comparison, the correation
coefficient for a perfect corrdation is equa to one. The correlation coefficient corresponding to
the data for non-pressurized tank carsis equd to 0.972, and for pressurized cars the correlation
coefficient is0.627. These vauesfor the corrdation coefficient indicate that the semi-empiricd
equation for impact force is more accurate for non-pressurized tanks than it is for pressurized
tanks.

Figure 2 compares measured indentation from the first phase of the RPI-AAR tests (Phillips and
Olsen, 1972) with dent sizes caculated from equation (2). Similarly, the figure shows two sets
of data corresponding to non-pressurized and pressurized tank cars. The correlation coefficient
for the scatter illustrated in Figure 2 is equal to 0.895 for nonpressurized tank cars, and 0.739
for the pressurized tank cars. The correlation coefficient for al the data points plotted in Figure
2is0.833. Asinthe case of the equation for predicting maximum impact force, the equation to
cdculate indentation is relaively more accurate for non-pressurized tank cars than for pressur-
ized tank cars.
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The term “puncture velocity” refersto athreshold vaue for a given tank car design; an impact
velocity below the threshold is consdered safe from puncture and a velocity higher than the
puncture velocity is expected to cause full penetration of the coupler by piercing thetank. As
such, the puncture velocity is difficult to quantify precisdy by testing only. Animpact test will
result in either a dent without puncture or full penetration (puncture), but gives no additiond in-
formation in regard to the threshold. Consequently, direct comparisons between actuad and
cdculated puncture velocities cannot always be shown in graphica form. For this reason, the
comparison between test results and predicted puncture velocities from the semi-empirica
equationsis presented in tabular form. Specificdly, the tables in this section will: (1) summarize
the test variables in agiven test series, and (2) show the correlations between ca culated punc-
ture velocity and the experimental data.

Table 1 summarizes the test datafor 25 full-scale impact experiments involving bare tank car
heads. Some experiments were repesated with identical test variables except impact velocity. In
al these tests, the ram car weighed 128,900 Ib. Also, the materia of the tank car head was
AAR M-115 sted which has an ultimate tensile strength between 55 and 65 k. Assuming that
triaxid stresses are related to uniaxid test data by von Mises equivalent dress, the ultimate shear
grength is related to the ultimate tensile strength by:

t =Ls =0577 . (14)

G

The last column in Table 1 ligts the puncture vel ocity caculated using equation (7) and assuming
that the ultimate shear Srength is 38 ks (i.e, 0.577" 65 k). Puncture is predicted if the maxi-
mum impact speed is greater than the calculated puncture velocity. The caculated puncture
veocity and the experimentd results were consistent in 11 out of 12 cases when the tank car
was not pressurized, and 8 out of 13 cases when the tank car was pressurized interndly. Two
experiments resulted in adight fracture of the tank car head without full penetration of the cou
pler (both tests were recorded as “no puncture’ events). The semi-empirica equations
predicted puncture in one case which was pressurized (impact test no. 17 in Table 1), but no
puncture in the other case which was not pressurized (impact test no. 18). The outage was 2%
in dl the tests except impact test numbers 20, 21, and 25 in which the outage was 100%.
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Table 2 ligs the test parameters and the calculated puncture velocities for a second test series
comprisng nine full-scale experiments conducted in the RPI-AAR Tank Car Head Study (Phil-
lipsand Olsen, 1972). Inthistest series, the tank car head thickness was 0.5 inch and the ram
car weighed 128,900 |b. The predicted outcome (i.e., whether puncture occurred or not) was
congstent with the experimentally observed result in dl but two cases. Pressurized tank cars
were involved in the two cases where the predictions and experiments disagreed. In one of the
anomalous cases (impact test no. 6), the outage was 0% which in itsdf was an anomay since
the outage in dl other testsinvolving pressurized tank cars was 2%.

Eight tests on full-scale riveted tank car heads were conducted during the RPI-AAR Tank Car
Head Study. Six tests were conducted on tank cars with ahead shield of 0.5 inch thickness,
and two tests were conducted on a conventiondly insulated tank car which had 4 inches of fi-
berglass and sted jacket of 0.125 inch thickness. Table 3 ligts the variables for each of these
tests. Although the tank car head materid (AAR M-115 stedl) and the head shield materid
(A-36 sted) were different designations, the ultimate shear strength for both was assumed to be
the same (38 kd) in the caculation of puncture velocity. In the case of the jacketed and insu-
lated tank car, the jacket materia was assumed to have the same ultimate shear strength asthe
head. The table indicates agreement between the caculated and experimenta results for punc-
turein four out of Sx casesinvolving head shidd protection and none out of two cases for the
jacketed and insulated tank cars.

The RPI-AAR Tank Car Head Study also included experiments using one-fifth scae-modd
tanks. These scde-modd experiments were performed as a cost- saving measure Snce more
scale-mode tests could be performed than full-scale tests a the same cost. Table 4 lists the test
datafor the one-fifth scale-modd tests without head shield protection. The caculated puncture
velocity falswithin the bounds of the test resultsin two out of eight cases. The test results cor-
responding to afull-scale thickness of 5/8 (0.625) inch and tank car heads made from TC-
128B materid are shown in Figure 3 (see page 16). Differences between the predicted and
observed results are evident except when the interna pressure was 50 psi. Table 5 liststhe
variablesin the one-fifth scale-modd tests with head shield protection. Calculations suggested
that puncture would occur in al the listed cases but no punctures were observed in any of the
tests, indicating that the caculations are conservative. On the other hand, the results from Table
4 may aso suggest that the usefulness of the one-fifth scde-model data may be questionable
without further examinations. 2

2 Discrepancies between scaled and full-scale test data were encountered in impacts test involving chlo-

rine tank cars (Coltman and Hazel, 1992).
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Figure 3. Comparison between Calculated Puncture Velocity and One-Fifth Scale Data
for TC-128B Tank Car Head Material with 0.625-inch Thickness

The RPI-AAR Tank Car Head Study (Phillips and Olsen, 1972) dso included three tests on
DOT112A340W tank cars. two with bare tank car heads and one with head shield protection.
The variables for these three tests are listed in Table 6. 1n the case of no head shield protection,
the predicted puncture velocity of 10.0 mph agreed with the test results where no puncture was
observed at 9.3 mph while puncture occurred at 12.7 mph. In the test with head shield protec-
tion, the caculated puncture velocity was 15.9 mph while the test conducted a 15 mph did not
result in puncture, confirming the calculated result.

Impact tests on chlorine tank cars (Coltman and Hazedl, 1992) provided another source of data
to compare with the semi-empirica equations. Table 7 shows data for nine full-scale tests
(three with head shield protection, and six with stedl jackets). The caculated puncture velocity
for each case involving head shield protection is 20.5 mph, but one experiment conducted a
23.4 mph did not result in puncture. Again, this result indicates conservatism regarding the
semi-empirica equations. Conversdy, in the case of asted jacket with 0.875-inch thickness,
the caculation overestimated the actua puncture velocity; the threshold was computed to be
16.9 mph, but puncture occurred in atest conducted at 15.1 mph. In the case of sted jacket
with 0.813-inch thickness, the puncture velocity was caculated to be 16.2 mph and no puncture
was observed in atest conducted a an impact velocity of 15.1 mph which corroborates the
caculated result.
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Table 8 shows data from the same test program (Coltman and Hazel, 1992) using actud tank
cars, one DOT112J340W tank car and four DOT105A500W cars. These tank cars have dif-
ferent head diameters as well as different thicknesses for the shell, head shield, and thermal
protection system insulation jacket. Inthe single test on the DOT112J340W tank car, the cal-
culated puncture velocity of 20.1 mph was confirmed by the test result (no puncture was
observed in atest conducted at 18.5 mph). In the tests on the DOT105A500W tank cars, the
caculated puncture velocity of 16.8 mph underestimated the actua threshold vaue (atest con
ducted at 17.5 mph did not puncture). The latter result could suggest that the semi-empirica
equations produce conservative estimates of puncture velocity.

Impact tests have aso been conducted on aluminum DOT111A60ALW1 tank cars (Larson,
1992). Six experiments were conducted in this test series (three with a bare head and three
with head shield protection). Table 9(a) lists the data for the tests conducted on bare heads
where the impact velocity was the only variable. The caculated puncture velocity for these tests
was found to be 6.1 mph, which appears to overestimate the actua puncture velocity because a
test conducted at 5.0 mph resulted in fracture (but not full penetration of the coupler).

In order to caculate puncture velocity for the test cases involving head shield protection, the
semi-empirical equations were modified to account for different materials in the head shield and
the tank head. In these tests, the head shields were made from sted and the tank shellsfrom
aduminum. The modification to account for different materidsin the head shidd and the tank is
amilar to that derived for effective thickness. By mathematicd andogy, an effective ultimate
shear strength t . is defined as.

q

ty =[te+ta] (15)

wheret g is the ultimate shear strength of the head shield materid, t ;s is the ultimate shear
srength of the tank head materia, and ¢ istreated as an empirica congtant. The utimate shear
grength of 5052 aluminum is assumed to be 14.4 ks, and that of AAR TC-128 is47 ks (both

vaues correspond to 0.577 times the ultimate tensle strength of these respective materids). In
the present caculations, ¢ in equation (15) is assumed to be 3.
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Table 9(b) ligts the variables for three impact tests on duminum tank cars protected with stedl
head shidds. Two tests were conducted under identica conditions except the initia impact ve-
locity. The puncture velocity for these tests was caculated to be 19.4 mph, which appearsto
overestimate the actua puncture velocity because atest at 17.8 mph resulted in puncture. The
third test in this series involved a shield with increased thickness (0.625 inches versus 0.5 inches
in the previous two tests). Consequently, a higher puncture velocity (20.6 mph) was caculated
which was supported by the test result; no puncture as observed for a 17.5-mph impact.

3

Thetest result at 17.5 mph must be qualified (see Note 5 at the bottom of Table 9).
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4. DISCUSSION AND SUMMARY

Failures from couplers impacting tank car heads have been characterized by: (1) plug forma-
tion, (2) petal formation or dishing, (3) ductile hole enlargement, and (4) fragmentation.* The
semi-empirica equations do not make a distinction between these different faillure modes. In
addition, in some tank car designs, failures often occur at the reinforcing pad rather than at the
location of coupler impact, but the semi-empirica equations do not account for this possibility.

Although these equations have the capability to account for the effect of interna pressurization,
they do not account for the effect of the liquid contained in the tank. For example, the results
from impact tests 5 and 6 in Table 2 suggest that outage has a significant effect on the puncture
velocity, but outage is not considered in the semi-empirica equations.

As presented in Section 2, the semi-empirica equations do not have the capability to account
for different materiadsin the tank car head and the head shidd. For example, the case of an
auminum tank car head protected by a stedl head shield cannot be handled directly by the
equations without modification. Such amodification was described in Section 3, but does not
have atheoretica bads other than by mathematical analogy to the effective thickness parameter.

Thefailure criterion for the semi-empirica equations is based on the transverse shear stress
component for aflat plate subjected to a concentrated load. The load may be applied at the
center of the plate or off-center. Physicaly, this component of stressiis reasonable to gpply asa
falure criterion Snce the failure modes associated with tank car puncture are invariably shear-
typefalures. However, in the RPI-AAR formulation, the mathematica expression for this stress
component was derived by taking only the firg five termsin the infinite series solution.  Further
examinations conducted in the present study have reveded that the number of terms required to
meatch the infinite series solution for transverse shear to within a given accuracy depends on the
distance the load is gpplied from the center of the plate. For example, if the load is gpplied at

an offset distance 0.2 times the radius of the plate, 10 terms are needed to achieve 2 decimal-
place accuracy. If the load is applied at an offset distance of 0.3 timesthe plate radius, 20
terms are required for the same levd of accuracy. The fallure criterion for tank car punctures
will be discussed in greeter detall in the next report in this series.

Notwithstanding the foregoing discussion, the predictions from the semi-empirica equetions for
puncture velocity are generdly within reasonable agreement with experimenta data. But the
agreement between predictions and experimental data becomes worse when head shield
protection is present and when the tank isinternaly pressurized. In casesinvolving heed shied
protection, the caculated puncture vel ocity appears to be conservative (lower than observed
test results).

*  For example, see Shang and Everett, 1972.
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Neglecting the one-fifth scae data, 65 test cases involving full-scale and actua tank cars were
considered in thisreport. The outcome predicted by the semi-empirica equations (i.e., punc-
ture or no puncture) agreed with the experimental resultsin 48 out of these 65 cases. Of the 17
cases where the predicted and actua outcomes were different, the semi-empirical equations
overestimated the puncture velocity in two cases. In other words, in dmost al caseswherethe
predicted and actual outcomes disagreed, the semi-empirica equation underestimated the actua
puncture vel ocity, indicating consarvatism when gpplying the semi-empirica approach. Under-
estimates may be considered to be on the safe Sde and of no concern in terms of puncture
velodity.

The semi-empirica equations overestimated the actua puncture velocity in two tests cases con-
ddered inthisreport. Inthefirgt case (Impact number 6 in Table 2 on page 12), the tank car
was completdy filled with liquid (i.e., 0% outage) which represented an anomaous test condi-
tion snce dl other testsin this particular seriesinvolving pressurized tank cars had an outage of
2%. In the second case where the semi-empirica equations overestimated the actud puncture
velocity (Test FS-23in Table 7 on page 18), the shell thickness was 0.875 inch which repre-
sents the largest shell thickness congdered in the 54 test cases involving full-scale and actua
tank cars. Thistest case dso involved interna pressurization a 100 ps and thermd insulation
with a0.125-inch jacket.

Agreement between caculated puncture velocity and test results may be improved by ether (1)
adjusgting or modifying the semi-empirica equations to match the available test data, or (2)
deriving dternative formulations based on engineering principles. These options will be
described in the second report of this series.
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